PINNED

| url | name | comments | rating | read? |
|---|---|---|---|---|
| https://detexify.kirelabs.org/classify.html | It deciphers a hand-written symbol | 5.0 | ||
| http://write-math.com/ | It deciphers a hand-written symbol | decisively less good than the detexify.kirelabs.org site | 4.0 | |
| https://math.hws.edu/gassert/LaTeX_Guide_Title.pdf | LATEX guide | 4.0 | ||
| https://kogler.wordpress.com/2008/03/21/latex-multiline-equations-systems-and-matrices/ | LaTeX - Multiline equations, systems and matrices | 3.5 |
In the Note editor (CKedit) :
style="font-size:20px" , or whatever desired size, to the span class="math-tex" element.Examples:
\(F(\xi) \triangleq \left\{ \{x = \log_{10}{\int_{-\infty}^{\pi} {-b \pm \sqrt{b^2-4ac \sin(\xi)} \over 2a}}\otimes\partial f/\partial t\}\Rightarrow\{\lim_{\delta \rightarrow \infty}[\arcsin(\delta)] = \oint_a^b\det\begin{bmatrix}\frac{\text{d}x}{\text{d}y} & \sum_a^b f''(x) \\\frac{\partial a}{\partial b} & \sqrt[n/t]{ab} \end{bmatrix}\} \right\}\)
\(f = \underbrace {x^3} _ \textrm {text 1} + \underbrace {2 + sin(x)} _ \textrm {text 2} \oplus \mathbf{V_0}\)
\ blank space
\quad a space equal to the current font size
Normal text:
\text{count of samples with } T=x \(\text{count of samples with } T= x\)
Boldface (e.g., vectors):
\mathbf{V} \(\mathbf{V}\)
Greek:
\varphi \phi \gamma\Gamma \(\varphi \phi \gamma\Gamma\)
Note: Uppercase letters that are identical to latin, such as A, aren't available.
Lowercase epsilon, theta, kappa, phi, pi, rho, and sigma are provided in two different versions; the alternate, or variant, version is created by adding "var" before the name of the letter
Calligraphy:
\mathcal{AC} \(\mathcal{AC}\)
\mathscr{AC} \(\mathscr{AC}\)
Subscript/Superscript (use curly brackets for groups):
k_i ki
k^s ks
\alpha' \( \alpha'\)
{\huge\varphi}_{A,B} \ \circ \ {\huge\alpha}'_{X,A} \({\huge\varphi}_{A,B} \ \circ \ {\huge\alpha}'_{X,A} \) (could also use \large in lieu of \huge)
\triangleq \(\triangleq\)
\approx \(\approx\)
\cong \(\cong\)
\neq \(\neq\)
\equiv \(\equiv\)
\otimes \(\otimes\)
\bigotimes \(\bigotimes\)
\oplus \(\oplus\)
\bigoplus \(\bigoplus\)
\circ \(f \circ g\)
\sqrt{x} \(\sqrt{x}\)
\sqrt[n]{x} \(\sqrt[n]{x}\)
Arrows:
\longrightarrow \(X \longrightarrow Y\)
\Longrightarrow \(\Longrightarrow\)
\leadsto \(A \leadsto B\)
\leq \(a \leq b\)
\in \(\in\)
Empty set \emptyset \( \emptyset \)
Curly brackets \{ x+y \} \(\{ x+y \} \)
Summations:
\sum_{i=1}^{10} t_i \(\sum_{i=1}^{10} t_i\)
\displaystyle\sum_{i=1}^{10} t_i \(\displaystyle\sum_{i=1}^{10} t_i\)
Calculus:
\int_{a}^{b} \(\int_{a}^{b} \)
\partial \(\partial\)
\nabla \(\nabla\)
Large brackets:
To make parentheses, etc, larger (automatic sizing), use pairs of \left and \right . If one side is not paired up, use a period as an invisible placeholder . Can also use \middle
\left( \frac{x^2}{y^2} \right) \(\left(\frac{x^2}{y^2}\right)\)
If using curly brackets, they must be preceded by a \ , because curly brackets have a special meaning:
\left\{ \frac{x^2}{y^2} \right\} \(\left\{ \frac{x^2}{y^2} \right\}\)
Large fractions:
A \over B \(A \over B\)
Binomial:
\left(\begin{array}{c}a\\ b\end{array}\right) \(\left(\begin{array}{c}a\\ b\end{array}\right)\)
BINARY OPERATORS
\pm \(\pm\)
\cdot \(\mathbf{V} \cdot \mathbf{W}\) Dot (inner) product:
\times \(\mathbf{V} \times \mathbf{W}\) Cross product
Matrices:
\( \begin{pmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{pmatrix}\)
For determinants, use vmatrix instead of pmatrix
Definitions by case:
\(f(i, j) = \begin{cases} T \quad \text{if} \ \left({a_i},{b_j}\right) \in R \\ F \quad \text{if} \ \left({a_i},{b_j}\right) \notin R \end{cases}\)
Systems of equations:
\(\begin{cases} 3x + 5y = 2 \\ x – y =10 \end{cases}\)
To align (here we use 2 columns, and align the signs and equals. The &{} specifies a small spacing; only need to specify it once):
\(\begin{alignat*}{2} 3 x & + 5y &{} & = 2 \\ x & - y & & = 10 \end{alignat*}\)
\(\begin{cases} 3 x & + 5y &{} & = 2 \\ x & - y & & = 10 \end{cases} \)
The \\ indicates new lines.
The & positions determine what gets aligned horizontally.
\(\begin{align}f \colon A &\to B \\x &\mapsto f(x)\end{align}\)
Another example:
\(\begin{align} C(x_i \ ,\ t_{\mu+1}) = \ &C(x_i \ , \ t_\mu ) \\ &+ D \ {\Delta t \over (\Delta x)^2 } \end{align}\)
Note: split works equally well in lieu of align. Both are provided by the by included amsmath package.
Matrix in running text:
\text{In other words}: \bigl(\begin{smallmatrix}
a&b \\ c&d
\end{smallmatrix} \bigr)\(\text{In other words}: \bigl(\begin{smallmatrix} a&b \\ c&d \end{smallmatrix} \bigr)\)
yields: \(X \begin {smallmatrix} \phi \\ \longrightarrow \\ \\ \\ \\ \\ \\ \\ \end{smallmatrix} Y\)
In this case, the simpler X \xrightarrow{\phi} Y will do a similar job: \(X \xrightarrow{\phi} Y\)
$$\begin{array}{ccccccccc}0 & \xrightarrow{i} & A & \xrightarrow{f} & B & \xrightarrow{q} & C & \xrightarrow{d} & 0 \\\downarrow & \searrow & \downarrow & \nearrow & \downarrow & \searrow & \downarrow & \nearrow & \downarrow \\0 & \xrightarrow{j} & D & \xrightarrow{g} & E & \xrightarrow{r} & F & \xrightarrow{e} & 0\end{array}$$yields:
$$
\begin{array}{ccccccccc}
0 & \xrightarrow{i} & A & \xrightarrow{f} & B & \xrightarrow{q} & C & \xrightarrow{d} & 0 \\
\downarrow & \searrow & \downarrow & \nearrow & \downarrow & \searrow & \downarrow & \nearrow & \downarrow \\
0 & \xrightarrow{j} & D & \xrightarrow{g} & E & \xrightarrow{r} & F & \xrightarrow{e} & 0
\end{array}
$$
\def and \newcommand are available.
EXAMPLES
$$ \def\myHearts{\color{purple}{\heartsuit}\kern-2.5pt\color{green}{\heartsuit}}
\myHearts
$$yields:
$$ \def\myHearts{\color{purple}{\heartsuit}\kern-2.5pt\color{green}{\heartsuit}} \myHearts $$
$$
\newcommand\myHearts[2] {\color{#1}{\heartsuit}\kern-2.5pt\color{#2}{\heartsuit}}\myHearts{red}{blue}
$$yields:
$$ \newcommand\myHearts[2] {\color{#1}{\heartsuit}\kern-2.5pt\color{#2}{\heartsuit}}
\myHearts{red}{blue}
$$
$$
\newcommand{\bra}[1]{\left<#1\right|}
\newcommand{\ket}[1]{\left|#1\right>}
\newcommand{\bk}[2]{\left<#1\middle|#2\right>}
\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}\bra{x}\ket{y}\bk{x}{y}\bke{x}{y}{z}$$yields:
$$
\newcommand{\bra}[1]{\left<#1\right|}
\newcommand{\ket}[1]{\left|#1\right>}
\newcommand{\bk}[2]{\left<#1\middle|#2\right>}
\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}
\bra{x}
\ket{y}
\bk{x}{y}
\bke{x}{y}{z}
$$
$$\newcommand{\ra}[1]{\!\!\!\!\!\!\!\!\!\!\!\!\xrightarrow{\quad#1\quad}\!\!\!\!\!\!\!\!}\newcommand{\da}[1]{\left\downarrow{\scriptstyle#1}\vphantom{\displaystyle\int_0^1}\right.}%\begin{array}{llllllllllll} 0 & \ra{f_1} & A & \ra{f_2} & B & \ra{f_3} & C & \ra{f_4} & D & \ra{f_5} & 0 \\\da{g_1} & & \da{g_2} & & \da{g_3} & & \da{g_4} & & \da{g_5} & & \da{g_6} \\0 & \ra{h_1} & 0 & \ra{h_2} & E & \ra{h_3} & F & \ra{h_4} & 0 & \ra{h_5} & 0 \\\end{array}$$yields
$$
\newcommand{\ra}[1]{\!\!\!\!\!\!\!\!\!\!\!\!\xrightarrow{\quad#1\quad}\!\!\!\!\!\!\!\!}
\newcommand{\da}[1]{\left\downarrow{\scriptstyle#1}\vphantom{\displaystyle\int_0^1}\right.}
%
\begin{array}{llllllllllll} 0 & \ra{f_1} & A & \ra{f_2} & B & \ra{f_3} & C & \ra{f_4} & D & \ra{f_5} & 0 \\
\da{g_1} & & \da{g_2} & & \da{g_3} & & \da{g_4} & & \da{g_5} & & \da{g_6} \\
0 & \ra{h_1} & 0 & \ra{h_2} & E & \ra{h_3} & F & \ra{h_4} & 0 & \ra{h_5} & 0 \\
\end{array}
$$
One way (not the only one) to load these extensions from within a math expression using the non-standard \require{extension} macro, which allows SKIPPING CONFIGURATION CHANGES / PRE-LOADING (i.e. "Loading Extensions at Run Time".) For example:
\require{\AMScd}
\begin{CD}
A @<<< B @>>> X\\
@. @| @AAA\\
@. P @= E
\end{CD}\(\require{\AMScd} \begin{CD} A @<<< B @>>> X\\ @. @| @AAA\\ @. P @= E \end{CD}\)
\require{\AMScd}\begin{CD}
Normal: \sum_{i=0}^n\int_{a_i}^{b_i}f(x)
\quad Large:
{\large
\sum_{i=0}^n\int_{a_i}^{b_i}f(x)
}
\quad HUGE:
{\huge
\sum_{i=0}^n\int_{a_i}^{b_i}f(x)
}
\end{CD}Note: if the begin/end statements are left out, the size disparity is reduced! If \require{\AMScd} is not included, it still works on the webpage, but not in the CK editor!
\(\require{\AMScd} \begin{CD} Normal: \sum_{i=0}^n\int_{a_i}^{b_i}f(x) \quad Large: {\large \sum_{i=0}^n\int_{a_i}^{b_i}f(x) } \quad HUGE: {\huge \sum_{i=0}^n\int_{a_i}^{b_i}f(x) } \end{CD}\)
Note: \ce stands for "chemical equation"
\(\require{\mhchem} \ce{aA +bB <=> cC + dD}\)
\(\require{\mhchem} \ce{aA +bB <=>[kF][kR] cC + dD}\)
\(\require{\mhchem} \ce{CO2 + C ->[k_F] 2 CO}\)
\(\require{\mhchem} \ce{Zn^2+ <=>[+ 2OH-][+ 2H+] $\underset{\text{zinc hydroxide}}{\ce{Zn(OH)2 v}} $ <=>[+ 2OH-][+ 2H+] $\underset{\text{tetrahydroxozincate(II)}}{\ce{[Zn(OH)4]^2-}}$}\)
More info on mhchem